

•

•

CONTENTS

CIRCULAR CEILING DIFFUSER (FIXED CORE) INTRODUCTION & OPERATING RANGE

CIRCULAR CEILING DIFFUSER (FIXED CORE) **DETAILS & DIMENSIONS**

CIRCULAR CEILING DIFFUSER (FIXED CORE)

TABULAR SELECTION

JET NOZZLE DIFFUSER (BALL TYPE)

INTRODUCTION

JET NOZZLE DIFFUSER (BALL TYPE)

DETAILS, DIMENSIONS & SELECTION

SWIRL DIFFUSER

INTRODUCTION

SWIRL DIFFUSER

DETAILS, DIMENSIONS & SELECTION

•

CIRCULAR CEILING DIFFUSER (FIXED CORE)

Model CSCD C/W BFD (FIXED CORE)

This model of circular Diffuser is totally different in its design, construction & concept from our one mentioned in chapter # 10. In this model core (Inner cones) is:

- Fixed.
- Flushed to the frame.
- Can't be adjusted vertically up or down.
- But still removable from the face.

Each diffuser already equipped with ABS (plastic) butterfly damper in black color as standard.

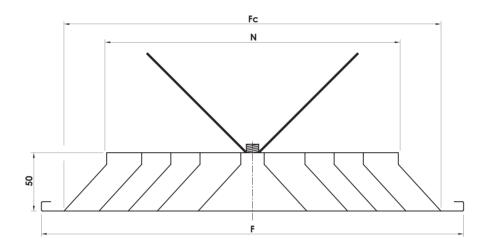
Features & Characteristics:

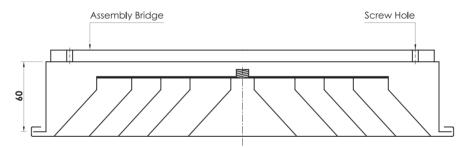
- Frame & inner cones (core) are made of high quality Aluminum sheet pressed to give the circular shape.
- Damper (Butterfly type): made of ABS (plastic) in black color.
- The inner cones (core) are designed in conical shape, modern styling & easy removable allowing for easy installation, balancing, cleaning, damper adjustment & access to duct system.
- Available in 5 standard sizes ranging from 150 mm to 350 mm Ø in 50 mm increments.
- Provided with standard sealing sponge gasket fixed backside of each diffuser.
- Provided with G.I. assembly bridge & screws for easy installation.
- Good for installations between 2.6 to 4.1 mtr height.

BCI reserves the right to make changes without prior notice.

OPERATING RANGE & QUICK SELECTION TABLE					
Nominal No	CTM P				
mm	Inch	CFM Range			
150 Ø	6" Ø	60 to 200			
200 Ø	8 " Ø	120 to 320			
250 Ø	10" Ø	180 to 470			
300 Ø	12" Ø	240 to 630			
350 Ø	14" Ø	300 to 820			

• @ Max 40 dBA.





CIRCULAR CEILING DIFFUSER (Fixed core)

NECK & OTHER DIMENSIONS							
Nominal Ne	eck size (N)	Dimensio	Dimensions in mm				
mm	Inch	FØ	Fc Ø	No. of cones			
150 Ø	6" Ø	262	214	2			
200 Ø	8 " Ø	304	256	3			
250 Ø	10'' Ø	362	314	4			
300 Ø	12'' Ø	401	353	5			
350 Ø	14'' Ø	452	404	6			

 $\bullet\,$ All Dimensions are in mm and subject to ± 2mm tolerance.

CIRCULAR CEILING DIFFUSER (Fixed core)

Engineering & Performance Data

TABULAR SELECTION FOR CSCD C/W BFD (FIXED CORE)

		150	200	250	200	250
CFM	SIZE	150 mm	200 mm	250 mm	300 mm	350 mm
	Vel	2.75	1.20	0.77	0.54	0.40
	ΔΡ	0.70	0.28	0.23	0.21	0.20
60	Th. min	0.50	0.33	0.27	0.22	0.19
	Th. max	0.92	0.70	0.61	0.55	0.51
	dbA	< 15	< 15	< 15	< 15	< 15
	Vel	4.12	1.79	1.16	0.81	0.60
	Δ Ρ	1.33	0.40	0.28	0.23	0.21
90	Th. min	0.75	0.49	0.40	0.33	0.29
	Th. max	1.25	0.92	0.79	0.70	0.64
	dbA	< 15	< 15	< 15	< 15	< 15
	Vel	5.50	2.39	1.55	1.08	0.81
	Δ P	2.22	0.57	0.35	0.27	0.23
120	Th. min	1.00	0.66	0.53	0.44	0.38
	Th. max	1.59	1.13	0.96	0.85	0.77
	dbA	< 15	< 15	< 15	< 15	< 15
	Vel	6.87	2.99	1.94	1.35	1.01
	Δ P	3.37	0.79	0.44	0.31	0.26
150	Th. min	1.24	0.82	0.66	0.55	0.48
	Th. max	1.92	1.35	1.14	0.99	0.89
	dbA	32	18	< 15	< 15	< 15
	Vel	8.25	3.59	2.32	1.61	1.21
100	ΔP	4.77	1.05	0.55	0.36	0.29
180	Th. min	1.49	0.99	0.79	0.66	0.57
	Th. max	2.25	1.57	1.32	1.14	1.02
	dbA	37	24	< 15	< 15	< 15
010	Vel Δ P	9.62	4.18 1.37	2.71	1.88	1.41
	Th. min	6.42 1.74	1.15	0.68	0.43	0.32
210	Th. max	2.58	1.79	1.49	1.29	1.15
	dbA	41	28	1.47	< 15	< 15
	Vel	10.99	4.78	3.10	2.15	1.61
	ΔΡ	8.33	1.73	0.83	0.50	0.36
240	Th. min	1.99	1.31	1.06	0.88	0.76
240	Th. max	2.91	2.01	1.67	1.43	1.28
	dbA	45	32	21	< 15	< 15
	Vel	12.37	5.38	3.49	2.42	1.81
	ΔΡ	10.50	2.14	1.01	0.58	0.41
270	Th. min	2.24	1.48	1.19	0.99	0.86
	Th. max	3.24	2.23	1.84	1.58	1.40
	dbA	48	35	25	16	< 15
	Vel	.0	5.98	3.87	2.69	2.02
	ΔΡ		2.60	1.20	0.67	0.46
300	Th. min		1.64	1.32	1.10	0.95
	Th. max		2.45	2.02	1.73	1.53
	dbA		38	28	19	< 15
	Vel		7.17	4.65	3.23	2.42
	ΔΡ		3.66	1.64	0.89	0.58
360	Th. min		1.97	1.59	1.32	1.14
	Th. max		2.88	2.37	2.02	1.78
	dbA		43	33	24	17

CFM	SIZE	150 mm	200 mm	250 mm	300 mm	350 mm
	Vel		8.37	5.42	3.37	2.82
	ΔΡ		4.91	2.17	1.14	0.72
420	Th. min		2.30	1.85	1.54	1.33
	Th. max		3.32	2.72	2.31	2.04
	dbA		47	37	29	21
	Vel			6.20	4.31	3.22
	ΔΡ			2.78	1.44	0.89
480	Th. min			2.11	1.76	1.52
	Th. max			3.08	2.61	2.29
	dbA			41	32	25
	Vel			6.97	4.84	3.67
- 40	ΔΡ			3.47	1.77	1.07
540	Th. min			2.38	1.98	1.72
	Th. max			3.43	2.90	2.55
	dbA			44	36	29
	Vel			7.75	5.38	4.03
400	Δ P			4.23	2.14	1.28
600	Th. min			2.64	2.20	1.91
	Th. max			3.78	3.19	2.80
	dbA			8.52	39	32
	Vel A P			5.08	5.92	4.43
440				2.91	2.55	1.51
660	Th. min			4.13 50	2.42	3.05
	Th. max			50	3.49	3.05
	dbA Vel				6.46	4.84
	ΛP				3.00	1.76
720	Th. min				2.64	2.29
720	Th. max				3.78	3.31
	dbA				44	37
	Vel				7.00	5.24
	ΔΡ				3.49	2.04
780	Th. min				2.86	2.48
700	Th. max				4.07	3.56
	dbA				46	39
	Vel					6.05
	ΔΡ					2.65
900	Th. min					2.86
	Th. max					4.07
	dbA					43
	Vel					6.85
	ΔΡ					3.35
1,000	Th, min					3.24
	Th. max					4.58
	dbA					46
	Vel					7.66
	ΔΡ					4.14
1,200	Th. min					3.62
	Th. max					5.08
	dbA					50

Vel = Velocity (m/s)

 Δ P = Pressure Drop (mm. wg) Th. min = Throw, Minimum (m) Th. max = Throw, Maximum (m) dbA = Noise level (dbA)

JET NOZZLE DIFFUSER (BALL TYPE)

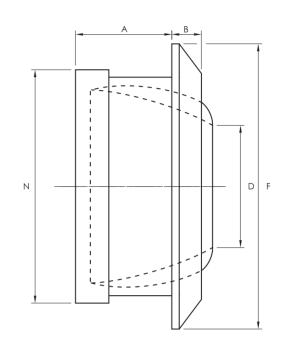
Model: JET NOZZLE DIFFUSER (BALL TYPE)

The ball type Jet Nozzles with variable diffusion directions are particularly designed for Air Conditioning systems which require long concentrated throws in order to reach areas which are distant from the duct system or hidden by structural elements.

Jet Nozzles of ball type can be utilized for both vertical & horizontal air diffusion, thanks for their easy orientation in all directions around 360°, also the minimum construction tolerance & an accurate smooth finish of the spherical body together with its surrounding ring guarantees easy & precise movement.

- Spherical body & its ring are made of high quality Aluminum sheet pressed to give the ball shape.
- The ball can be oriented around 360°.
- Fixing ring is provided with holes for easy screw installation.
- An extra covering ring is provided to conceal the fixing screws (turning this ring clockwise is only what you need to fit it in place).
- The built in circular neck provided at the backside of each diffuser allows for easy connection to flexible duct.
- A double felt seal between the ball body & its ring permits a perfect seal & a self locking position once desired angle has been chosen.
- Available in five standard sizes 150, 200, 250, 315 & 400 Ø mm.
- Good for installations between 2.8 to 30 mtr height.

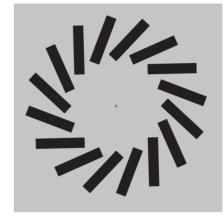
158



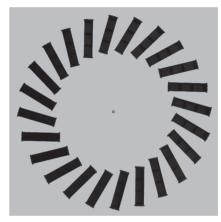
JET NOZZLE DIFFUSER (BALL TYPE)

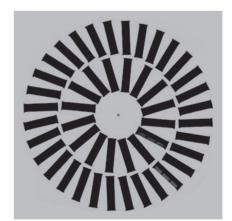
Nominal Size	Neck & other Dimensions						
(N)	NØ	DØ	FØ	Α	В		
150 Ø	145	75	198	80	23		
200 Ø	198	105	261	105	30		
250 Ø	247	130	316	135	35		
315 Ø	314	162	392	170	40		
400 Ø	398	210	495	215	55		

ullet All Dimensions are in mm and subject to $\pm\,2\,\mathrm{mm}$ tolerance.



Model: SWD 16 / 24 / 48


The swirl Diffuser with manual adjustment deflectors has been especially developed to enable the direction of air discharge to be altered on site to cater for any changes in room layout or partitions. Due to the rotary swirling motion of the air discharge, induction of room air occurs very quickly resulting in a rapid decay of supply air velocity & temperature difference so that a large number of air changes (up to 30 per hour) can be obtained with temperature difference between + 10 c° & - 10 c°.

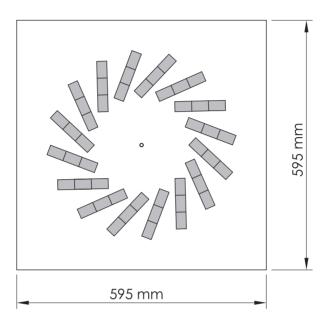

SWD 16

Features & Characteristics:

- Face plate (panel) made of high quality steel sheet finished in white powder coating in standard size 595*595 mm outer dimensions.
- Ready to fit in standard 600*600 mm false ceiling tile.
- The control deflectors are made from plastic (ABS) in black color as standard.
- Each deflector is singularly adjustable & fit in place to give the final geometry.
- The pivoting deflectors can be set in different positions in order to vary the direction of discharged air. By turning all deflectors in the same direction (set @45°), the air flow will discharge in the form of centrifugal swirl motion, in this case this diffuser will be suitable for all applications which require high induction for heating & cooling.
- Available in three different options of number of deflectors giving different quantity of air flow, thus 16, 24 & 48 deflectors.

SWD 24

SWD 48



160

SWIRL DIFFUSER

OPERATING RANGE & QUICK SELECTION TABLE							
Model	Outer Size (mm)	Number of Deflectors	A eff. (m²)	CFM Range	Throw @Vt=0.25m/s (m)	Pressure drop △ P (Pa)	Noise Level (dBA)
SWD 16	595 x 595	16	0.022	90 - 320	<1 - 6.1	6 - 71	<20 - 54
SWD 24	595 x 595	24	0.032	135 - 480	<1 - 7.3	6 - 72	<20 - 51
SWD 48	595 x 595	48	0.043	185 - 600	<1 - 6.4	6 - 62	<20 - 54

•••

•

